Publications‎ > ‎Domestic‎ > ‎

Forest plot volume estimation using National Forest Inventory, Forest Type Map and Airborne LiDAR data


The importance of estimating forest volume has been emphasized by increasing interest on carbon sequestration and storage which can be converted from volumeestimates. With importance of forest volume, there are growing needs for developing efficient and unbiased estimation methods for forest volume using reliable data sources such as the National Forest Inventory (NFI) and supplementary information. Therefore, this study aimed to develop a forest plot volume model using selected explanatory variables from each data type (only Forest Type Map (FTM), only airborne LiDAR and both datasets), and verify the developed models with forest plot volumes in 60 testplots with the help of the NFI dataset. In linear regression modeling, three variables (LiDAR height sum, age, and crown density class) except diameter class were selected as explanatory independent variables. These variables generated the four forest plotvolume models by combining the variables of each data type. To select an optimalforest plot volume model, a statistical comparing process was performed between four models. In verification, Model no. 3 constructed by both FTM and airborne LiDAR was selected as an optimal forest plot volume model through comparing root mean square error (RMSE) and coefficient of determination (R 2). The selected best performance model can predict the plot volume derived from NFI with RMSE and R 2 at 50.41 (m3) and 0.48, respectively.